Universal upper and lower bounds on energy of spherical designs

نویسندگان

  • P. G. Boyvalenkov
  • P. D. Dragnev
  • D. P. Hardin
  • M. M. Stoyanova
چکیده

Linear programming (polynomial) techniques are used to obtain lower and upper bounds for the potential energy of spherical designs. This approach gives unified bounds that are valid for a large class of potential functions. Our lower bounds are optimal for absolutely monotone potentials in the sense that for the linear programming technique they cannot be improved by using polynomials of the same or lower degree. When additional information about the structure (upper and lower bounds for the inner products) of the designs is known, improvements on the bounds are obtained. Furthermore, we provide ‘test functions’ for determining when the linear programming lower bounds for energy can be improved utilizing higher degree polynomials. We also provide some asymptotic results for these energy bounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Linear Programming Bounds for Spherical Codes and Designs

We investigate universal bounds on spherical codes and spherical designs that could be obtained using Delsarte’s linear programming methods. We give a lower estimate for the LP upper bound on codes, and an upper estimate for the LP lower bound on designs. Specifically, when the distance of the code is fixed and the dimension goes to infinity, the LP upper bound on codes is at least as large as ...

متن کامل

Linear Programming Bounds for Spherical Codes and Designs

We describe linear programming (LP) techniques used for obtaining upper/lower bounds on the size of spherical codes/spherical designs. A survey of universal bounds is presented together with description of necessary and sufficient conditions for their optimality. If improvements are possible, we describe methods for finding new bounds. In both cases we are able to find new bounds in great range...

متن کامل

On the Riesz Energy of Spherical Designs

We show how polynomial techniques can be applied for obtaining upper and lower bounds on the Riesz energy of spherical designs.

متن کامل

On Zagreb Energy and edge-Zagreb energy

In this paper, we obtain some upper and lower bounds for the general extended energy of a graph. As an application, we obtain few bounds for the (edge) Zagreb energy of a graph. Also, we deduce a relation between Zagreb energy and edge-Zagreb energy of a graph $G$ with minimum degree $delta ge2$. A lower and upper bound for the spectral radius of the edge-Zagreb matrix is obtained. Finally, we ...

متن کامل

A note on the bounds of Laplacian-energy-like-invariant

The Laplacian-energy-like of a simple connected graph G is defined as LEL:=LEL(G)=∑_(i=1)^n√(μ_i ), Where μ_1 (G)≥μ_2 (G)≥⋯≥μ_n (G)=0 are the Laplacian eigenvalues of the graph G. Some upper and lower bounds for LEL are presented in this note. Moreover, throughout this work, some results related to lower bound of spectral radius of graph are obtained using the term of ΔG as the num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015